Nanocrystalline transformer core provider by Transmart? Transmart Industrial Limited is an one stop solution provider for magnetic cores and chokes, supplying various magnetic cores in Nanocrystalline , Amorphous and Silicon steels, supplying soft magnetic materials, soft magnetic cores, toroidal transformer, nanocrystalline cores, toroidal core, electrical and electronic components as well as other materials for transformers and associated industries. Read even more details at nanocrystalline transformer core. Soft magnetic materials are those materials that are easily magnetised and demagnetised. They typically have intrinsic coercivity less than 1000 Am-1. They are used primarily to enhance and/or channel the flux produced by an electric current. The main parameter, often used as a figure of merit for soft magnetic materials, is the relative permeability (µr, where µr = B/ µoH), which is a measure of how readily the material responds to the applied magnetic field. The other main parameters of interest are the coercivity, the saturation magnetisation and the electrical conductivity.
Commonly used transformer cores are generally made of silicon steel sheets. Silicon steel is a kind of steel with silicon (silicon is also called silicon), and its silicon content is 0.8 ~ 4.8%. The reason why silicon steel is used as the iron core of transformer is that silicon steel itself is a magnetic material with strong magnetic conductivity. In the energized coil, it can produce large magnetic induction intensity, which can reduce the volume of transformer.
We know that the actual transformer always works in AC state, and the power loss is not only on the resistance of the coil, but also in the iron core magnetized by alternating current. Usually, the power loss in the iron core is called “iron loss”. The iron loss is caused by two reasons, one is “hysteresis loss” and the other is “eddy current loss”. Nanocrystalline magnetic core is a small part with magnetic conductivity. There are nanocrystalline particles with small particles in the center of nanocrystalline magnetic core. The working principle of nanocrystalline magnetic core is to absorb the common mode current in the cable through the principle of induction heating and convert it into heat to dissipate. rolled silicon steel sheet is selected. It is cut into long pieces according to the size of the required iron core, and then overlapped into “day” shape or “mouth” shape. In principle, in order to reduce eddy current, the thinner the silicon steel sheet, the narrower the spliced strip, and the better the effect. This not only reduces the eddy current loss and temperature rise, but also saves the material of silicon steel sheet. But in fact, when making silicon steel sheet iron core. Not only from the above favorable factors, because making the iron core in that way will greatly increase the working hours and reduce the effective section of the iron core. Therefore, when making transformer iron core with silicon steel sheet, we should start from the specific situation, weigh the advantages and disadvantages and choose the best size.
As one of Transmart Industrial’s multiple product series, mumetal cores series enjoy a relatively high recognition in the market. Transmart Industrial provides diversified choices for customers. The mu-metal cores are available in a wide range of types and styles, in good quality and in reasonable price.Transmart Industrial effectively improves after-sales service by carrying out strict management. This ensures that every customer can enjoy the right to be served. Discover extra info on https://www.transmart.net/.
Amorphous nanocrystalline alloys are competing with soft ferrite in the field of medium and high frequency. In 10kHz to 50KHz electronic transformer, the working magnetic flux density of iron-based nanocrystalline alloy can reach 0.5T and the loss P0.05 5 / 20K ≤ 25W / kg, so it has obvious advantages in high-power electronic transformer. In 50 kHz to 100 kHz electronic transformer, the loss of iron-based nanocrystalline alloy is P0.05 2 / 100k is 30 ~ 75W / kg, Fe based amorphous alloy P0.05 2 / 100k is 30W / kg, which can replace some ferrite markets.
At present, up powder core occupies the main share in the high-end market. However, due to the complex manufacturing process of M, that is, powder core and the noble price of raw materials, the price of powder core remains high and the scope of application is restricted to a certain extent. In recent years, iron-based nanocrystalline soft magnetic powder core has attracted much attention because of its low price, simple preparation process and excellent performance. Its research is quite active, which is expected to replace the local use of up powder core and be applied in the field of high frequency.