Particle size analysis providers with MicroVision Laboratories right now? Close examination of any possible defects or voids was undertaken at higher magnification. The voids did not appear to create any structural or conductivity issues. Additionally, the formation and contiguity of intermetallic bonds between the contacts and solder were shown using a combination of EDS line scan elemental spectroscopy and elemental mapping. The SEM image and the EDS map to the left show the intermetallic layer between the copper wire and the tin/lead solder via the mixture of the red copper and the blue tin.
As indicated in the FTIR spectral comparison below, the suspect material showed a near perfect match for acetylsalicylic acid. Additionally, there was a small amount of dibasic phosphate present. It was determined that the material was likely acetylsalicylic acid with a phosphate binder – an aspirin. Therefore, from this analysis the suspect material in the bottle was likely a household aspirin tablet, broken apart and separated by the water. In order to confirm the identification, a few aspirin tablets from several common manufacturers were obtained, roughly ground, and soaked to allow for comparison. The optical morphology of the crystals, size range of the particles, association with the phosphate and FTIR spectrum all were consistent with the original suspect material. A report detailing the methods and findings in full narrative form was rendered to the client.
Examining the sample with a polarized light microscope (PLM), it was darker and coarser than expected for a mold sample. The dust appeared to be a closed cell, synthetic blown foam material, and all from the same source. The black color was likely due to pigment particles added to color the foam. Fourier Transform Infra-Red spectroscopy was performed on the foam particles. The spectrum showed a mixture of spectral features, associated with vinyl acetates, polyurethane, and cellulose or other sugar-like polymers. Based on these features, a common urethane acetate foam was determined as the likely source material.
We are proud to announce that MicroVision Labs is now accredited to the ISO/IEC 17025:2017 standard. This represents over a year of diligent effort from all of our staff to verify and validate our in house SOP’s and transform our quality management system to one that is compliant to this international standard. This certification requires that accredited labs demonstrate that they are competent and can produce technically valid data and results unlike other certifications such as ISO 9001:2015. This represents an obvious value to our clients. Explore extra info at Microvision labs website.
What if I want a service not listed in your services list? At MicroVision Labs the list of services which we provide to our clients is constantly growing. So if you don’t see what you are looking for give us a call or use the Contact Us tab. Also don’t forget to check our Additional Services Page to see if it might be listed there. Can you identify a contamination or unknown for us? Yes, we call that an Unknown Material ID and we routinely work on that kind of project. We have a number of individual tests designed to classify unknown materials. When combined with our extensive suite of equipment, these tests allow us to identify virtually any material. Give us a call and talk to one of our knowledgeable staff for more information.
MicroVision Labs uses a brand new comprehensive LUMOS micro-IR that combines standard optical and polarized light microscopy. It also has sophisticated automation for a variety of IR spectral measurement techniques. Our LUMOS system is the first of its kind to be commissioned in the US and allows for particles down to 5um in diameter to be examined. This new instrument increases our ability to provide quality organic spectroscopy and enables sample mapping using special IR features with full automation for feature identification with quantifiable, traceable spectral measurement. Discover more info at here.